\(\int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [130]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 174 \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {(a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \]

[Out]

-cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f-EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b
*sin(f*x+e)^2)^(1/2)/f/(1+b*sin(f*x+e)^2/a)^(1/2)+(a+b)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x
+e)^2)^(1/2)*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3267, 486, 21, 434, 437, 435, 432, 430} \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {(a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{f \sqrt {a+b \sin ^2(e+f x)}}-\frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f} \]

[In]

Int[Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/f) - (Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]
*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + ((a + b)*Sqrt[Cos[e + f*x]^2]*E
llipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(f*Sqrt[a + b*Sin[e + f*x]
^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 434

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 3267

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{x^2 \sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {b-b x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {\left (b \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1-x^2}}{\sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f}+\frac {\left ((a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\left ((a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a+b \sin ^2(e+f x)}} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f}-\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {(a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.58 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.79 \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {-\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \cot (e+f x)-2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )}{2 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Csc[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(-(Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Cot[e + f*x]) - 2*a*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE
[e + f*x, -(b/a)] + 2*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)])/(2*f*Sqrt[2*a
 + b - b*Cos[2*(e + f*x)]])

Maple [A] (verified)

Time = 1.80 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.90

method result size
default \(\frac {b \left (\cos ^{4}\left (f x +e \right )\right )+\left (-a -b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sin \left (f x +e \right ) \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, \left (F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \right )}{\sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(156\)

[In]

int(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(b*cos(f*x+e)^4+(-a-b)*cos(f*x+e)^2+sin(f*x+e)*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*(Ellipti
cF(sin(f*x+e),(-1/a*b)^(1/2))*a+EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a)
)/sin(f*x+e)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 626, normalized size of antiderivative = 3.60 \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=-\frac {2 \, {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) \sin \left (f x + e\right ) + 2 \, {\left (2 i \, a + i \, b\right )} \sqrt {-b} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) \sin \left (f x + e\right ) + 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b \cos \left (f x + e\right ) + {\left (2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (2 i \, a + i \, b\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (-2 i \, \sqrt {-b} b \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (-2 i \, a - i \, b\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}})}{2 \, b f \sin \left (f x + e\right )} \]

[In]

integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(2*(-2*I*a - I*b)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt
((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt(
(a^2 + a*b)/b^2))/b^2)*sin(f*x + e) + 2*(2*I*a + I*b)*sqrt(-b)*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*e
lliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*
b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2)*sin(f*x + e) + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*b*cos(f
*x + e) + (2*I*sqrt(-b)*b*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (2*I*a + I*b)*sqrt(-b)*sin(f*x + e))*sqrt((2*b*
sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x +
 e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (-2*I*sqrt(-b)*b*
sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (-2*I*a - I*b)*sqrt(-b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2
*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (
8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2))/(b*f*sin(f*x + e))

Sympy [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \csc ^{2}{\left (e + f x \right )}\, dx \]

[In]

integrate(csc(f*x+e)**2*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*csc(e + f*x)**2, x)

Maxima [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*csc(f*x + e)^2, x)

Giac [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*csc(f*x + e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

[In]

int((a + b*sin(e + f*x)^2)^(1/2)/sin(e + f*x)^2,x)

[Out]

int((a + b*sin(e + f*x)^2)^(1/2)/sin(e + f*x)^2, x)